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Objectives

Semantic segmentation methods rely heavily on large annotated datasets.
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e  Object Segmentation is an extremely time consuming task
COCO dataset, it requires over 22 worker hours per 1,000 segmentations.
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Objectives:
e Proposing data efficient & performing semantic segmentation.
e Leveraging the large amount of easily available unlabeled data.

= We propose a novel semi-supervised method for semantic segmentation based on
consistency training.



Cluster Assumption

Applying Consistency training (CT) in semantic segmentation is not straightforward: even when impressive
results were obtained with CT on semi-supervised image classification, the adoption of such methods in
semantic segmentation is not as straight forward.

The Cluster Assumption: « If points are in the same cluster, they are likely to be of the same class. »
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Cluster assumption in Semantic Segmentation

At the pixel level, the value of the neighboring patches varies smoothly even when the class of the pixel changes.

To illustrate this, we compute the local smoothness:
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Input patches Encoder's output features
Feature Feature Feature
Input smoothness smoothness smoothness
smoothness Segmentation Classification Obj Detection

The cluster assumption is violated at the input level but is maintained at the feature level.

—»Enforce the consistency over the encoder’s outputs.




Cross-Consistency Training (CCT)

Proposed method:

= Cross-consistency training: enforce consistency of predictions on the unlabeled data over the features
rather than the inputs.
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Cross-Consistency Training (CCT)  Training:

1- Forward both labeled and unlabeled images through the
encoder & main decoder:
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2- Apply K perturbations to the encoder’s output:
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Perturbations

We define 3 types of perturbations: feature based, prediction based and random perturbations.

Feature noise (F-noise)

Activations z

Uniform noise
N ~ U(-0.3,0.3)

Adjs the amplitude
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Perturbed activations
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Feature drop (F-drop)

Activations z
& Threshold v ~ ¢£(0.6,0.9)

Perturbed activations
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Random perturbations (DropOut):
simple spatial dropout.




Perturbations
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Results .
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Using image-level labels

Generate pseudo pixel-level labels from image level
labels.

1- Train the encoder for image classification:
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2- Use the trained classifier to generate class
activation maps M:

Train the aux. decoders using the generated pseudo labels

|- K
[’ = |D1 |% Z ZH(ypng(zi)) L= ES =t wwcu <t wwﬁw
w XY €Dy k=1
Results
3- Considering only positions with high :
confidence & Applying a CRF preprocessing: Method Pixel-level Image-level Val
Labeled Labeled
Examples Examples
CCT 1k - 64.0
CCT 1.5k - 69.4

CCT 1.5k 9k 73.2




CCT on multiple domains

CCT can be easily extended to multiple domains with partially or fully non-overlapping label spaces.

Train a shared encoder on both domains & enforce Method Labeled CS  SUN  Avg.
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Conclusion

We presented the following main-contributions:
(1) Consistency Training for semantic segmentation.

We observed that for semantic segmentation, due to the dense nature of the task, the cluster assumption is more easily enforced over
the hidden representations rather than the inputs.

(2) Cross-Consistency Training.

We proposed CCT (Cross-Consistency Training) for semi-supervised semantic segmentation, where we define several novel
perturbations, and show the effectiveness of enforcing consistency over the encoder outputs rather than the inputs.

(3) Using weak-labels and pixel-level labels from multiple domains.

The proposed method is quite simple and flexible, and can easily be extended to use image-level labels and pixel-level labels from
multiple-domains.

(4) Competitive results.

We showed competitive results on several semantic segmentation benchmarks.
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