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Motivation
• The success of semantic segmentation relies heavily on the availability of large annotated datasets.
• Semi-Supervised Learning (SSL) with consistency training is appealing but still confined to classification.
Goal: Adapting Consistency Training for semantic segmentation & leveraging unlabeled data.
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Semi-Supervised Learning (SSL) Cluster Assumption

Is the cluster assumption maintained at the pixel-level ? Pixel values may vary smoothly even when the class changes.
Cluster Assumption at the pixel level: Can be investigated by computing the local smoothness.
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The cluster assumption is violated at the input level, but is maintained at the feature level.
→ Enforce the consistency over the encoder’s outputs.

Cross-Consistency Training (CCT)
Problem Formulation:
Objective: exploit the unlabeled set Du together with a smaller labeled set Dl to train a segmentation network f to
perform well on test data. In CCT, we define:
• A segmentation network f = g◦hwith an encoder h and a main decoder g andK auxiliary decoders gka , k ∈ [1,K].
• r perturbation functions pr to be applied to the encoder’s output z corresp. to an unlabeled example xu.

Main idea: Enforce a consistency of predictions on Du between the output of the main decoder f(xu
i ), considered

as target, and that of the aux. decoders gka(z̃i) over various perturbations applied to z to get z̃.
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Training:
• Forward both labeled xl and unlabeled xu images

through the encoder & main decoder.
• Apply K perturbations to the encoder’s output z.
• Compute the aux. predictions gka(z̃).
• Compute the loss L using the supervised Ls and

unsupervised Lu losses: L = Ls + ωuLu with:
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Inference: Only the seg. network f is used.

Perturbations
The following perturbations are to be applied to the encoder’s output z:
Feature Based. They consist of either injecting noise into or dropping some of the activations of z.
• A uniform tensor noise N ∼ U(−0.3, 0.3) is injected into z after adjusting its amplitude: z̃ = (z�N) + z.
• The maximally activated features are dropped using a threshold γ: z̃ = (z�Mdrop) with Mdrop = {z < γ}1.
Random. A simple application of spatial dropout to the activations z.
Prediction Based. Using the predictions of the main and aux. decoders, we generate masks M* and adversarial noise
to be applied to z.
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Experiments & Results
Ablations. The results confirm the effectiveness of enforcing the consistency over the hidden representations for
semantic segmentation, and highlights the versatility of CCT and its success with numerous perturbations.
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Results. CCT outperforms previous works relying on the same level
of supervision and even methods which exploit image-level labels. We
also obtain impressive results when using with image-level labels and
when training on multiple domain confirming the flexibility of CCT.

Method n=50 n=100

CS CVD Avg. CS CVD Avg.

Kalluri, et al. [24] 34.0 53.2 43.6 41.0 54.6 47.8

Baseline 31.2 40.0 35.6 37.3 34.4 35.9
CCT 35.0 53.7 44.4 40.1 55.7 47.9

Method Labeled
Examples

CS SUN Avg.

SceneNet [34] Full (5.3k) - 49.8 -
Kalluri, et al. [24] 1.5k 58.0 31.5 44.8

Baseline 1.5k 54.3 38.1 46.2
CCT 1.5k 58.8 45.5 52.1

Method Pixel-level
Labeled
Examples

Image-level
Labeled
Examples

Val

WSSL [37] 1.5k 9k 64.6
GAIN [31] 1.5k 9k 60.5
MDC [51] 1.5k 9k 65.7
DSRG [22] 1.5k 9k 64.3
Souly et al. [47] 1.5k 9k 65.8
FickleNet [30] 1.5k 9k 65.8

Souly et al. [47] 1.5k - 64.1
Hung et al. [23] 1.5k - 68.4

CCT 1k - 64.0
CCT 1.5k - 69.4
CCT 1.5k 9k 73.2
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Conclusion
In this work, we: (1) investigate the cluster assumption in semantic segmentation; (2) propose CCT where we
enforce the consistency over the encoder’s outputs rather than the inputs; (3) extend CCT to use weak-labels
and pixel-level labels from multiple domains. For more details, please see the paper & code.


