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Motivation

e The success of semantic segmentation relies heavily on the availability of large annotated datasets.
e Semi-Supervised Learning (SSL) with consistency training is appealing but still confined to classification.
Goal: Adapting Consistency Training for semantic segmentation & leveraging unlabeled data.
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Pixel Level ?

Is the cluster assumption maintained at the pixel-level ? Pixel values may vary smoothly even when the class changes.
Cluster Assumption at the pixel level: Can be investigated by computing the local smoothness.
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The cluster assumption is violated at the input level, but is maintained at the feature level.
— Enforce the consistency over the encoder’s outputs.

Cross-Consistency Training (CCT)

Problem Formulation:

Objective: exploit the unlabeled set D,, together with a smaller labeled set D; to train a segmentation network f to
perform well on test data. In CCT, we define:

e A segmentation network f = goh with an encoder h and a main decoder g and K auxiliary decoders ¢*, k € [1, K.
e 1 perturbation functions p,- to be applied to the encoder’s output z corresp. to an unlabeled example x“.

Main idea: Enforce a consistency of predictions on D,, between the output of the main decoder f(x}'), considered
as target, and that of the aux. decoders ¢”(z;) over various perturbations applied to z to get Z.

Training:

e Forward both labeled x; and unlabeled x,, 1mages
through the encoder & main decoder.

e Apply K perturbations to the encoder’s output z.

e Compute the aux. predictions g~ (z).

e Compute the loss £ using the supervised L, and
unsupervised £, losses: £ = L + w, L, with:
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Inference: Only the seg. network f is used.
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Perturbations

The following perturbations are to be applied to the encoder’s output z:

Feature Based. They consist of either injecting noise into or dropping some of the activations of z.

e A uniform tensor noise N ~ U/(—0.3,0.3) is injected into z after adjusting its amplitude: z = (z ® N) + z.
e The maximally activated features are dropped using a threshold v: z = (z ©® Mirop) With Mo, = {2 < 7}1.
Random. A simple application of spatial dropout to the activations z.

Prediction Based. Using the predictions of the main and aux. decoders, we generate masks M+ and adversarial noise
to be applied to z.
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Experiments & Results

Ablations. The results confirm the effectiveness of enforcing the consistency over the hidden representations for
semantic segmentation, and highlights the versatility of CCT and its success with numerous perturbations.
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Results. CCT outperforms previous works relying on the same level CTT (n=15K)

of supervision and even methods which exploit image-level labels. We
also obtain impressive results when using with image-level labels and
when training on multiple domain confirming the flexibility of CCT.

PascalVoc CityScapes + SUB-RGBD

Method Pixel-level Image-level Val Method Labeled CS SUN Avg.

Labeled Labeled Examples

Examples Examples

SceneNet [34] Full (5.3k) - 49.8 -
WSSL [37] 1.5k Ok 64.6 Kalluri, et al. [24] 1.5k 58.0 315 448
GAIN [31] 1.5k Ok 60.5 Baseline 1.5k 543 38.1 462
MDC [51] 1.5k Ok 65.7 CCT 1.5k 588 455 52.1
DSRG [22] 1.5k Ok 64.3 . _
Souly et al. [47] 1.5k ok 65.8 CityScapes + CamVid
FickleNet [30] 1.5k 9k 65.8 n=50 n=100
Method
Souly et al. [47] 1.5k - 64.1 CS CVD Avg. CS CVD Avg.
Hung et al. [23] 1.5k - 68.4
CCT ™ ] 64.0 Kalluri, et al. [24] 34.0 53.2 43.6 41.0 546 47.8
CCT 1.5k _ 69 4 Baseline 31.2 400 35.6 37.3 344 359
CCT 1.5k ok 739 CCT 35.0 5377 444 40.1 5577 479
Conclusion

In this work, we: (1) investigate the cluster assumption in semantic segmentation; (2) propose CCT where we
enforce the consistency over the encoder’s outputs rather than the inputs; (3) extend CCT to use weak-labels
and pixel-level labels from multiple domains. For more details, please see the paper & code.



