

Inference: Only the seg. network f is used.

Unlabeled Example

Perturbation

Aux. Decoders

Semi-Supervised Semantic Segmentation with Cross-Consistency Training

Yassine Ouali, Céline Hudelot, Myriam Tami Université Paris-Saclay, CentraleSupélec, MICS, 91190, Gif-sur-Yvette, France

$$\mathcal{L}_s = \frac{1}{|\mathcal{D}_l|} \sum_{\mathbf{x}_i^l, y_i \in \mathcal{D}_l} \mathbf{H}(y_i, f(\mathbf{x}_i^l))$$

$$C_u = \frac{1}{|\mathcal{D}_u|} \frac{1}{K} \sum_{\mathbf{x}_i^u \in \mathcal{D}_u} \sum_{k=1}^K \mathbf{d}(g(\mathbf{z}_i), g_a^k(\tilde{\mathbf{z}}_i))$$

Ablations. The results confirm the effectiveness of enforcing the consistency over the hidden representations for

PascalVoc				CityScapes + SUB-RGBD							
Method	Pixel-level Labeled Examples	Image-level Labeled Examples	Val	Method	L E	Labeled Examples		CS	SUN	Av	g.
	P			SceneNet [34]	F	ull (5.3k)		-	49.8	49.8 -	
WSSL [37]	1.5k	9k	64.6	Kalluri, et al.	24] 1	.5k		58.0	31.5	44.	8
GAIN [31]	1.5k	9k	60.5	Baseline	1	.5k		54.3	38.1	46.	2
MDC [51]	1.5k	9k	65.7	CCT	1	1.5k		58.8	45.5	52.	1
DSRG [22]	1.5k	9k	64.3								
Souly et al. [47]	1.5k	9k	65.8	CityScapes + CamVid							
FickleNet [30]	1.5k	9k	65.8	Mathad	n=50 n=100						
Souly et al. [47]	1.5k	-	64.1	Method	CS	CVD	Avg.	C	cs (CVD	Avg.
Hung et al. [23]	1.5k	-	68.4								
ССТ	1k	-	64.0	Kalluri, et al. [24]	34.0	53.2	43.6	41	.0	54.6	47.8
CCT	1.5k	-	69.4	Baseline	31.2	40.0	35.6	37	7.3	34.4	35.9
ССТ	1.5k	9k	73.2	CCT	35.0	53.7	44.4	4().1	55.7	47.9

In this work, we: (1) investigate the cluster assumption in semantic segmentation; (2) propose CCT where we enforce the consistency over the encoder's outputs rather than the inputs; (3) extend CCT to use weak-labels and pixel-level labels from multiple domains. For more details, please see the paper & code.

Conclusion

